摘 要: | 【目的】研究(X×Y,f×g)和(X,f)及(Y,g)之间动力性质的关系。【方法】将个体空间的动力性质推广到乘积空间。【结果】1)EP(f×g)=EP(f)×EP(g),其中EP(f)表示f 的所有终于周期点的集合,EP(g)表示g 的所有终于周期点的集合;2)f×g为可扩的充分必要条件是f与g分别为可扩的;3)若环面连续自映射可以分解成两个圆周连续自映射,则f1×f2具有拓扑稳定性的充分必要条件是f1与f2分别具有拓扑稳定性;4)若f×g为极小的,则f 与g 分别为极小的。【结论】乘积空间与个体空间在终于周期点集、拓扑可扩上是等价的,其中在一定特殊条件下拓扑稳定性是等价的,但在拓扑极小和拓扑传递的性质上却是不等价的。
|