摘 要: | 为提升铁路货运量预测精度和泛化能力,综合考虑铁路货运量时间序列数据的线性和非线性特征,提出了基于ARIMA-LSTM-XGBoost组合模型的铁路货运量预测方法。首先使用ARIMA模型对我国铁路货运量进行初步预测,再利用LSTM网络对残差进行校正,并将其与XGBoost模型结合,采用误差倒数法确定权重,构建一种加权组合模型。最后将组合模型与ARIMA、ARIMA-LSTM、LSTM、XGBoost模型进行对比,借助均方误差(MSE)、均方根误差(RMSE)、平均绝对值误差(MAE)、平均绝对百分比误差(MAPE)对上述模型的预测精度进行对比分析。使用2007年-2021年全国铁路货运量月度数据进行实验,实验结果表明:组合模型的MSE、RMSE、MAE、MAPE分别为0.011 9、0.109 4、0.068 3、1.775 2%,预测误差均低于上述对比模型,模型的预测精度和泛化能力都有所提升。
|