首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析和长短期记忆网络的滑坡地表位移监测数据缺失插补算法
作者姓名:张坤  肖慧  徐哈宁  胡佳超  范凌峰
作者单位:江西省放射性地学大数据技术工程实验室;东华理工大学地球物理与测控技术学院
基金项目:江西省放射性地学大数据技术工程实验室(JELRGBDT202206); 江西省防震减灾与工程地质灾害探测工程研究中心(SDGD202005);江西省自然科学20212BAB203004。
摘    要:在滑坡地表位移监测过程中,由于设备工作异常或恶劣气候的干扰,原始数据会随机出现长时间序列的缺失,这类数据对滑坡的预警和预测有很大的影响。针对上述问题,提出了一种基于主成分分析(principal component analysis, PCA)和长短期记忆网络(long-short term memory, LSTM)的数据插补方法。首先利用PCA实现滑坡监测数据的降维和特征提取,消除数据间的相关性,然后建立基于LSTM的地表位移监测数据插补模型,对缺失数据进行插补。实验结果表明:该模型与BP(back propagation)神经网络等其他几种机器学习插补模型相比,平均绝对误差、均方根误差和平均绝对百分比误差分别为0.523、1.233和0.009,均优于其他几种模型;该模型能够较好地解决地表位移长时间序列数据缺失的问题。

关 键 词:滑坡地表位移  缺失数据插补  主成分分析  长短期记忆网络
收稿时间:2022-11-14
修稿时间:2023-06-28
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号