摘 要: | 在滑坡地表位移监测过程中,由于设备工作异常或恶劣气候的干扰,原始数据会随机出现长时间序列的缺失,这类数据对滑坡的预警和预测有很大的影响。针对上述问题,提出了一种基于主成分分析(principal component analysis, PCA)和长短期记忆网络(long-short term memory, LSTM)的数据插补方法。首先利用PCA实现滑坡监测数据的降维和特征提取,消除数据间的相关性,然后建立基于LSTM的地表位移监测数据插补模型,对缺失数据进行插补。实验结果表明:该模型与BP(back propagation)神经网络等其他几种机器学习插补模型相比,平均绝对误差、均方根误差和平均绝对百分比误差分别为0.523、1.233和0.009,均优于其他几种模型;该模型能够较好地解决地表位移长时间序列数据缺失的问题。
|