摘 要: | 针对在实体对齐任务中,由于缺少噪音实体对的标记,导致对齐准确率不高的问题,提出采用健壮性实体对齐(Robust Entity Alignment,REA)方法,设计了噪声感知实体对齐模块和噪声检测模块.首先,噪声感知实体对齐模块是基于图卷积神经网络(Graph Convolutional Networks,GCN)的知识图编码器,将知识图谱中的实体对更新嵌入;然后,基于生成对抗网络(Generative Adversarial Networks,GAN)设计了噪声生成器和噪声鉴别器,从而将实体对中的噪音实体对区分出来;最后,通过一种交互的强化训练策略,迭代使噪声感知和实体对齐相结合.实验结果表明,在DBP15K数据集上测试,新方法能有效提高在涉及噪音情况下的实体对齐精准度,与GCN-Align和IPTransE这些基准嵌入模型相比,Hits@1、Hits@5、MRR 3个评价指标上均有较大的提升.
|