首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM分类的边缘提取算法
引用本文:张萍,王琳,游星. 基于SVM分类的边缘提取算法[J]. 成都理工大学学报(自然科学版), 2017, 44(2). DOI: 10.3969/j.issn.1671-9727.2017.02.15
作者姓名:张萍  王琳  游星
作者单位:成都理工大学管理科学学院,成都,610059
摘    要:
通过分析同类数据点在空间中的几何形态,从数据点集所构成几何形态的凹凸性着手,提出边界提取算法并对高维数据进行分类。针对现实生活中的高维数据,利用局部线性嵌入将数据进行降维处理,得到低维特征数据。在此基础上,对于单分类数据集,用数据集表面的点的近邻样本与过该点的切平面之间的关系寻找边界点;对于多分类数据集,利用贝叶斯后验概率来寻找边界重复的点,以此更快达到提取边界点的目的。由此可以粗略筛选出边界点。为去除不重要的边界点,降低分类误差,通过构造最优超平面和支持向量机对边界点赋予权重,并设置阈值去除不重要的边界点,由此达到用较少的边界点准确分类数据的目的。通过100个测试样本进行分类测试并计算其分类准确率,验证了此分类方法的可行性。

关 键 词:局部线性嵌入  近邻样本  贝叶斯后验概率  支持向量  边界提取算法

Edge extraction algorithm based on SVM classification
ZHANG Ping,WANG Lin,YOU Xing. Edge extraction algorithm based on SVM classification[J]. Journal of Chengdu University of Technology: Sci & Technol Ed, 2017, 44(2). DOI: 10.3969/j.issn.1671-9727.2017.02.15
Authors:ZHANG Ping  WANG Lin  YOU Xing
Abstract:
Based on the analysis on geometry of same data space and its concave-convex shape,the boundary extraction algorithm is proposed in order to classify high-dimensional data.Locally linear embedding is used to reduce high-dimensional data in real life into low dimension.For a single classification data set,relation between the neighboring points on the surface of data set with its tangent plane is used to determine the boundary point.For multi-classification data set,those overlap points are determined through Bayesian posterior probability so as to extract boundary point quickly.In this way,the boundary point is roughly dressed by screening.In order to remove unimportance boundary point and reduce classification error,weight is given to these boundary points by constructing optimal hyper-sphere and support vector machine.At the same time,a threshold is set to remove unimportance boundary point so as to obtain less boundary point data for the purpose of accurate classification.Finally,100 test samples are classified through this way and its feasibility is verified by calculating its classification accuracy.
Keywords:locally linear embedding  neighboring points  Bayesian posterior probability  support vector machine  boundary extraction algorithm
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号