首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进RPN的孪生小样本电力目标检测
作者姓名:冯珺  潘司晨  赵帅  彭梁英  樊雄飞
作者单位:国网浙江省电力有限公司信息通信分公司;浙江大学控制科学与工程学院
摘    要:为了解决当前电力系统巡检难度大、效率低、数据不足以支撑大规模训练的问题,提出一种基于孪生网络的小样本检测方法。首先,在Faster RCNN(faster region convolutional neural network)目标识别算法的框架下,搭建支持图片和查询图片共享的孪生网络模型;然后,利用改进的RPN(region proposal network)模块产生更高质量的proposals;最后,在检测头上对支持图片和查询图片的RoI(region of interest)进行关联匹配。结果表明,将算法应用于自主构建的EPD(electric power detection)数据集,在仅利用10张支持图片的情况下,就能实现对电力背景下鸟巢异物和绝缘子相关类别的检测,检测指标mAP达到18.92%。与其他算法相比,应用于电力行业目标检测的孪生网络小样本模型,在极端小样本情况下性能优良,同时具有更加轻量化的优势,可为电力检测新方法研究提供参考。

关 键 词:计算机感知  孪生网络  电力场景  小样本  目标检测
收稿时间:2022-11-29
修稿时间:2022-12-26
点击此处可从《河北科技大学学报》浏览原始摘要信息
点击此处可从《河北科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号