摘 要: | 传统的模糊决策树虽然可以从模糊数据中抽取模糊分类规则,但只能获取节点的隶属度信息,无法得出样本数据对于节点的非隶属度和犹豫度信息,导致数据分类的准确率不高。针对此,基于毕达哥拉斯模糊集理论,提出了一种新的加权毕达哥拉斯模糊决策树算法(Weighted Pythagorean Fuzzy Decision Tree,WPFDT)。首先,通过改进的K-means聚类算法得到连续属性数据的聚类中心,并结合三角模糊数对连续数据进行模糊处理;其次,定义并计算每一个属性的加权毕达哥拉斯模糊熵,选择加权毕达哥拉斯模糊熵最小的属性作为决策树根节点,在根节点下递归选择模糊熵最小的属性作为分裂节点,同时通过阈值控制树的规模,得到从根节点到叶子节点路径的模糊规则以及模糊规则的隶属度、非隶属度以及犹豫度,并完成预测分类,直至生成WPFDT模型;最后,选取UCI上的3个医学数据集(Haberman、Breast Cancer、Parkinson)进行实验,在分类准确率和得出模糊规则的数量与3种传统决策树算法(模糊ID3算法、C4.5算法、CART算法)比较,实验结果表明:WPFDT在分类精度和树大小上都优于其他传统决策树算法,并且有较高的召回率和精确率。
|