首页 | 本学科首页   官方微博 | 高级检索  
     

采用权重粒子群算法的照明控制
引用本文:何乐,郭家虎,陈晨,赵翔,蒋博伟. 采用权重粒子群算法的照明控制[J]. 重庆工商大学学报(自然科学版), 2020, 37(1): 14-18
作者姓名:何乐  郭家虎  陈晨  赵翔  蒋博伟
作者单位:安徽理工大学 电气与信息工程学院,淮南 232001
摘    要:
针对传统建筑照明系统中存在不能同时兼顾大面积照明环境舒适性及节能性的两大问题,引入了权重粒子群算法(Particle Swarm Optimization,PSO),并将其应用到照明控制系统中;首先通过采用多个传感器采集照度信息,随之将信息输入算法中,通过算法进行优化处理,最后系统自动寻出最优的光通量组合方式;算法可帮助场所内部照度分布均匀,在提升建筑光环境舒适度的同时也可大幅度降低照明损耗,提高能源利用效率;通过DIALux evo软件仿真验证,实验结果表明方案切实可行。

关 键 词:照明控制;粒子群优化算法;照度;光通量;光环境舒适度

Lighting Control Based on Weight Particle Swarm Optimization Algorithm
HE Le,GUO Jia-hu,CHEN Chen,ZHAO Xiang,JIANG Bo-wei. Lighting Control Based on Weight Particle Swarm Optimization Algorithm[J]. Journal of Chongqing Technology and Business University:Natural Science Edition, 2020, 37(1): 14-18
Authors:HE Le  GUO Jia-hu  CHEN Chen  ZHAO Xiang  JIANG Bo-wei
Abstract:
In view of the two problems in the traditional architectural lighting system that cannot take into account the comfort and energy saving of large-area lighting environment at the same time, this paper introduces the Particle Swarm Optimization (PSO) algorithm and applies it to the lighting control system. By using multiple sensors to collect illuminance information, the information is input into the algorithm, and is optimized by the algorithm. Finally, the system automatically finds the optimal combination of luminous flux. The algorithm can help the interior of the site to be evenly distributed, and it can greatly reduce the lighting loss and improve the energy utilization efficiency while improving the comfort of the building light environment. This paper is verified by DIALux evo software simulation, and the experimental results show that the scheme is feasible.
Keywords:lighting control  particle swarm optimization algorithm  illumination  luminous flux   light environment comfort
本文献已被 CNKI 等数据库收录!
点击此处可从《重庆工商大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆工商大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号