首页 | 本学科首页   官方微博 | 高级检索  
     

S_1-Frankl 猜想的6元情形(I)
引用本文:胡泽春,李世伦. S_1-Frankl 猜想的6元情形(I)[J]. 四川大学学报(自然科学版), 2020, 57(1): 11-26
作者姓名:胡泽春  李世伦
作者单位:四川大学数学学院,成都610064;四川大学数学学院,成都610064
摘    要:
并封闭集猜测(又称Frankl猜测)说的是:对于任意由有限集合构成的一个有限集族,如果这个集族不仅仅包含空集的话,一定存在一个元素至少属于这个集族中一半的集合。在文献【3】中,作者提出了一个加强的Frankl猜测(简称S-Frankl猜测),并给出了部分证明。特别地,在【3】中作者证明了如果集族的元素个数n=5的话S-Frankl猜测成立。在此,我们拟证明n=6时也成立。由于整个论文太长,我们将论文分成两部分,这是第一部分。

关 键 词:Frankl猜想  并封闭集猜想
收稿时间:2018-09-06
修稿时间:2019-01-12

The 6-element case of S_1-Frankl conjecture (I)
HU Ze-Chun and LI Shi-Lun. The 6-element case of S_1-Frankl conjecture (I)[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57(1): 11-26
Authors:HU Ze-Chun and LI Shi-Lun
Affiliation:Sichuan University,Sichuan University
Abstract:
The union-closed sets conjecture (Frankl''s conjecture) says that for any nite union-closed family of nite sets, other than the family consisting only of the empty set, there exists an element that belongs to at least half of the sets in the family. In [3], a stronger version of Frankl''s conjecture (S-Frankl conjecture for short) was introduced and a partial proof was given. In particular, it was proved in [3] that S-Frankl conjecture holds if n>=5, where n is the number of all the elements in the family of sets. Now, we want to prove that it holds if n = 6. Since the paper is very long, we split it into two parts. This is the first part.
Keywords:Frankl''s conjecture   the union-closed sets conjecture
本文献已被 万方数据 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号