首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of typep Banach spaces by the weak law of large numbers
Authors:Gan Shi-xin
Affiliation:(1) School of Mathematics and Statistics, Wuhan University, 430072 Wuhan Hubei, China
Abstract:For weighted sums of the form 
$$sum {_{j = 1}^{k_n } } a_{nj} X_{nj} $$
where {a nj , 1 ⩽jk n ↑∞,n⩾1} is a real constant array and {X aj , 1≤jk n, n≥1} is a rowwise independent, zero mean, random element array in a real separable Banach space of typep, we establishL r convergence theorem and a general weak law of large numbers respectively, conversely, we characterize Banach spaces of typep in terms of convergence inr-th mean and probability for such weighted sums. Foundation item: Supported by the National Natural Science Foundation of China (No. 10071058) Biography: Gan Shi-xin (1939-), male, Professor, research direction: martingale theory, probability limiting theory and Banach space geometry theory.
Keywords:Banach space of typep   array of random elements  weighted sums  weak law of large numbers  {a nj }-uniform integrability   L r convergence  convergence in probability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号