摘 要: | 本文在复域C内研究了二阶迭代微分方程x″(x[r](z))=(x[m](z))2,r,m≥2;r,m∈〖WTHZ〗N〖WTBZ〗解析解的存在性. 通过Schrder变换,即x(z)=y(α-1(z)),作者把这类方程转化为一种不含未知函数迭代的泛函微分方程α2y″(αr+1z)y′(αr z)=αy′(αr+1z)y″(αrz)+(y′(αrz))3(y(αm z))2,并给出它的局部可逆解析解.本文不仅讨论了双曲型情形|α|>1,0<|α|<1和共振的情形(α是一个单位根),而且还在Brjuno条
|