首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化和SOM网络的聚类算法研究
引用本文:唐贤伦,仇国庆,李银国,曹长修. 基于粒子群优化和SOM网络的聚类算法研究[J]. 华中科技大学学报(自然科学版), 2007, 35(5): 31-33,37
作者姓名:唐贤伦  仇国庆  李银国  曹长修
作者单位:重庆大学,自动化学院,重庆,400044;重庆邮电大学,自动化学院,重庆,400065;重庆邮电大学,自动化学院,重庆,400065;重庆大学,自动化学院,重庆,400044
摘    要:利用改进的粒子群优化算法(PSO)的优化性能,结合SOM网络模型,提出了一种基于粒子群优化算法和SOM网络的聚类算法(PSO/SOM),使用PSO对SOM网络进行训练来代替SOM的启发式训练方法.将PSO/SOM算法用于对Wine和Iris等数据集进行模式聚类识别,可以得到较优的聚类识别效果.相比标准SOM算法能有效提高网络映射的准确程度,降低网络的量化误差和拓扑误差,同时也降低了错聚率,实验结果验证了本算法的有效性.

关 键 词:聚类  粒子群优化  自组织特征映射网络
文章编号:1671-4512(2007)05-0031-03
修稿时间:2006-04-07

A clustering algorithm based on particle swarm optimization and self-organizing map
Tang Xianlun,Qiu Guoqing,Li Yinguo,Cao Changxiu. A clustering algorithm based on particle swarm optimization and self-organizing map[J]. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY.NATURE SCIENCE, 2007, 35(5): 31-33,37
Authors:Tang Xianlun  Qiu Guoqing  Li Yinguo  Cao Changxiu
Affiliation:1. College of Automation, Chongqing University, Chongqing 400044, China; 2. College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract:A hybrid clustering algorithm based on particle swarm optimization(PSO) and self-organizing map(SOM) is proposed.In the proposed algorithm,SOM network is trained by PSO algorithm instead of SOM' heuristic-based training algorithm.The algorithm was successfully applied to pattern clustering recognition problems including Wine,Iris,etc.The experimental results showed that this algorithm can obtain good clustering results.Compared with standard SOM algorithm,PSO/SOM can improve the clustering accuracy with lower quantization error and topological error.
Keywords:clustering   particle swarm optimization   self-organizing map
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号