首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于误差扩散理论的直线检测算法
引用本文:肖道举,彭涛,陈晓苏. 一种基于误差扩散理论的直线检测算法[J]. 华中科技大学学报(自然科学版), 2007, 35(4): 29-32
作者姓名:肖道举  彭涛  陈晓苏
作者单位:华中科技大学,计算机科学与技术学院,湖北,武汉,430074;华中科技大学,计算机科学与技术学院,湖北,武汉,430074;华中科技大学,计算机科学与技术学院,湖北,武汉,430074
基金项目:国家高技术研究发展计划(863计划)
摘    要:基于霍夫变换的基本原理,针对其在进行直线检测中存在的不足,利用误差扩散理论分析了在霍夫变换过程中的误差,研究了影响误差的因素.分析表明,直线的参数估计不仅和图像噪声有关,而且与直线的位置有关,直线到原点的距离越近,误差就越小,即对直线的检测精度就越高.提出了利用窗口移动的方法来寻求最优特征点和限制角度变换范围,结合最优特征点和误差扩散的理论,给出了一种改进的直线检测算法.在直线检测的精确性要求比较高的情况下,该算法能很好地满足要求.

关 键 词:直线检测  误差扩散  霍夫变换  曲线拟合
文章编号:1671-4512(2007)04-0029-04
修稿时间:2005-11-24

A line detection algorithm based on error propagation
Xiao Daoju,Peng Tao,Chen Xiaosu. A line detection algorithm based on error propagation[J]. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY.NATURE SCIENCE, 2007, 35(4): 29-32
Authors:Xiao Daoju  Peng Tao  Chen Xiaosu
Affiliation:College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:The principle of the traditional Hough transform was analyzed.Aiming at insufficiency of accuracy in line detection of the traditional Hough transform,using the principle of error propagation,analyses the error in the Hough transform in detail,obtains the factors influencing the error.The error not only depends on the noise of image,but also the distance of the line to origin,the closer to the origin,the smaller the error is.Presents the theory of using windows moving method to search the best-distinguished pixels and limit the scope transform.Combine the most best-distinguished pixels and error propagation,presents an improved line detection algorithm,this algorithm can improve the accuracy of the line detection by experiment.In the algorithm,the computational effective is not very good because of analyzing the error and finding the best-distinguished pixels,but for the application of high accuracy,the algorithm is good.
Keywords:line detection  error propagation  Hough transform  line fitting
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号