首页 | 本学科首页   官方微博 | 高级检索  
     

基于矩阵特征值的主用户信号全盲检测算法
引用本文:黄小玉,田堃,王向明,杨喜. 基于矩阵特征值的主用户信号全盲检测算法[J]. 吉首大学学报(自然科学版), 2000, 41(1): 35. DOI: 10.13438/j.cnki.jdzk.2020.01.007
作者姓名:黄小玉  田堃  王向明  杨喜
作者单位:(1.吉首大学物理与机电工程学院,湖南 吉首 416000;2.上交所技术有限责任公司,上海 200120;3.吉首大学信息科学与工程学院,湖南 吉首 416000)
基金项目:国家自然科学基金资助项目(61861019, 61362018);湖南省自然科学基金资助项目(2019JJ50483);湖南省教育厅优秀青年项目(18B316);江苏省博士后科研项目(1402041B)
摘    要:在多天线主用户信号检测过程中,在信道空闲和信道被占用2种情况下接收信号取样协方差矩阵的最大和最小特征值存在明显差异.根据这一观察,提出了一种新的基于取样协方差矩阵最大和最小特征值的盲检测算法.该算法以取样协方差矩阵最大与最小特征值的差与和的比值作为感知判决量,再通过引入大维随机矩阵中关于取样协方差矩阵最大和最小特征值分布的最新成果,设计出一种有效的判决门限计算方法.相对于经典的特征值检测算法,蒙特卡罗仿真实验比对结果表明,新算法具有感知判决门限计算准确的优点,能有效地提高检测性能和判决结果的可靠性.


Blind Primary User Signal Detection Algorithm Based on Matrix Eigenvalues
HUANG Xiaoyu,TIAN Kun,WANG Xiangmin,YANG Xi. Blind Primary User Signal Detection Algorithm Based on Matrix Eigenvalues[J]. Journal of Jishou University(Natural Science Edition), 2000, 41(1): 35. DOI: 10.13438/j.cnki.jdzk.2020.01.007
Authors:HUANG Xiaoyu  TIAN Kun  WANG Xiangmin  YANG Xi
Affiliation:(1. College of Physics and Mechanical & Electrical Engineering, Jishou University, Jishou 416000, Hunan China; 2. Shanghai Stock Exchange Technology Co., Ltd., Shanghai 200120, China; 3. College of Information Science and Engineering, Jishou University, Jishou 416000, Hunan China)
Abstract:In the process of multi-antenna primary user signal detection, the maximum eigenvalue and the minimum eigenvalue of the sampling covariance matrix of the received signal are significantly different when the channel is idle and the channel is occupied. According to this observation, a new blind detection algorithm based on the eigenvalues of sampling covariance matrix is proposed. The ratio of the difference and sum of the maximum eigenvalue to the minimum eigenvalue of the sampling covariance matrix is used as the decision statistic. By introducing the latest results on the distribution of maximum eigenvalues and minimum eigenvalues of the sampled covariance matrices in the large-dimensional random matrix theory, an effective method for calculating decision threshold is proposed. Compared with the classical eigenvalue detection algorithm, the new algorithm has the advantage of accurate calculation of the decision threshold, and effectively improves the detection performance and the reliability of decision results. The feasibility and superiority of the new algorithm are verified by Monte Carlo simulation experiments.
Keywords:cognitive radio, primary signal, signal detection   , the sample covariance matrix, eigenvalue
点击此处可从《吉首大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《吉首大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号