基于小数据集下BN建模的面部表情识别 |
| |
作者姓名: | 郭文强 高文强 肖秦琨 徐成 李梦然 |
| |
作者单位: | 陕西科技大学,西安工业大学,陕西科技大学,陕西科技大学 |
| |
基金项目: | 国家自然科学基金项目(面上项目,重点项目,重大项目) |
| |
摘 要: | 针对面部表情识别过程中获得的特征样本稀少的问题,提出了一种基于小数据集下贝叶斯网络(BN)建模的面部表情识别方法。首先提取面部表情图像的几何特征和HOG特征,经特征融合和归一化等处理构成动作单元(AU)标签样本集,其次提出了用于面部表情识别的BN结构,并将定性专家经验转化为BN条件概率之间的约束集合,随后引入凸优化最大化求解完成BN模型参数的估算,最后利用联合树推理算法识别出面部表情。实验结果表明:在小数据集条件下,与支持向量机(SVM)、Adaboost和卷积神经网络(CNN)等人脸表情分类方法相比,该方法能够取得更准确的面部表情识别结果。
|
关 键 词: | 面部表情识别 AU 小数据集 BN建模 |
收稿时间: | 2018-08-16 |
修稿时间: | 2018-08-16 |
|
| 点击此处可从《科学技术与工程》浏览原始摘要信息 |
|
点击此处可从《科学技术与工程》下载免费的PDF全文 |
|