Modeling and Forecasting Online Auction Prices: A Semiparametric Regression Analysis |
| |
Authors: | Ngai Hang Chan Wei Wei Liu |
| |
Affiliation: | 1. School of Statistics, Southwestern University of Finance and Economics, Chengdu, China;2. Department of Statistics, Chinese University of Hong Kong, Shatin, NT, Hong Kong;3. School of Mathematics and Statistics, Lanzhou University, China |
| |
Abstract: | Interest in online auctions has been growing in recent years. There is an extensive literature on this topic, whereas modeling online auction price process constitutes one of the most active research areas. Most of the research, however, only focuses on modeling price curves, ignoring the bidding process. In this paper, a semiparametric regression model is proposed to model the online auction process. This model captures two main features of online auction data: changing arrival rates of bidding processes and changing dynamics of prices. A new inference procedure using B‐splines is also established for parameter estimation. The proposed model is used to forecast the price of an online auction. The advantage of this proposed approach is that the price can be forecast dynamically and the prediction can be updated according to newly arriving information. The model is applied to Xbox data with satisfactory forecasting properties. Copyright © 2016 John Wiley & Sons, Ltd. |
| |
Keywords: | B‐splines online auction price prediction semiparametric regression |
|
|