首页 | 本学科首页   官方微博 | 高级检索  
     

用神经网络预测饱和液体密度
引用本文:韦藤幼,黄瑞华. 用神经网络预测饱和液体密度[J]. 广西科学, 2000, 7(3): 201-202,205
作者姓名:韦藤幼  黄瑞华
作者单位:广西大学工业测试实验中心,南宁市西乡塘路,530004;广西大学工业测试实验中心,南宁市西乡塘路,530004
摘    要:使用前向神经网络,采用带阻尼的牛顿二阶学习方法,学习纯物质的饱和液体密度与温度的关系,在熔点到临界点的温度范围内,预测平均误差小于0.03%。适宜的网络工作区间「amin,amax」为「0.5,0.7」。

关 键 词:神经网络  液体密度  预测  牛顿二阶学习方法
收稿时间:1999-11-05

Using Neural Network to Predict the Density of Saturated Liquid
Wei Tengyou and Huang Ruihua. Using Neural Network to Predict the Density of Saturated Liquid[J]. Guangxi Sciences, 2000, 7(3): 201-202,205
Authors:Wei Tengyou and Huang Ruihua
Affiliation:The Industrial Testing Experiment Centre, Guangxi University, Xixiangtanglu, Nanning, Guangxi, 530004, China and The Industrial Testing Experiment Centre, Guangxi University, Xixiangtanglu, Nanning, Guangxi, 530004, China
Abstract:The feed forword neural network is used to study the relationship between the density of the pure saturated liquid matters and the temperature. The weighs of the neural network are updated by using the damped Newton second order method. The estimated average errors are less than 0 03% between the melting point and the critical point. The suitable working range [ a min ,a max ] is [0 5,0 7] for the network.
Keywords:neural network   density of liquid   estimation  Newton second order method
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《广西科学》浏览原始摘要信息
点击此处可从《广西科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号