首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的土基回弹模量反算
引用本文:杨国良 王端宜 张肖宁. 基于BP神经网络的土基回弹模量反算[J]. 科学技术与工程, 2007, 7(5): 806-809815
作者姓名:杨国良 王端宜 张肖宁
作者单位:华南理工大学交通学院,广州,510640;华南理工大学交通学院,广州,510640;华南理工大学交通学院,广州,510640
基金项目:国家自然科学基金项目(50278037)资助
摘    要:基于三层BP神经网络和层状弹性理论,由路表变形反算土基回弹模量。利用层状弹性计算程序构建了土基回弹模量与路表弯沉数据库,并输入BP神经网络进行训练,建立了基于BP神经网络的土基回弹模量反算模型。理论和实测路表弯沉反算结果表明,该方法具有良好的识别能力和泛化能力,是一种实用而有效的方法,为进一步快速、有效地评定土基的承载能力提供了依据。

关 键 词:BP神经网络  土基回弹模量  反算  层状弹性理论  落锤式弯沉仪
文章编号:24015197
修稿时间:2006-11-02

BP Artificial Neural Network-based Backcalculation of Subgrade Resilient Moduli
YANG Guo-liang,WANG Duan-yi,ZHANG Xiao-ning. BP Artificial Neural Network-based Backcalculation of Subgrade Resilient Moduli[J]. Science Technology and Engineering, 2007, 7(5): 806-809815
Authors:YANG Guo-liang  WANG Duan-yi  ZHANG Xiao-ning
Affiliation:School of Traffic and Communications, South China University of Technology, Guangzhou 510640, P. R. China
Abstract:Based on a 3-layer BP artificial neural network and the layered elastic moduli was backcalculated by the surface deflections. The database of s moduli and surface deflections were established using layered elastic calculation program. Backcalculation model of subgrade resilient moduli was developed after the BP artificial neural network was trained by the established database. The results of backcal culation by theoretical and measured surface deflections indicate thatthe ability of this approach to re-recognition and generation is satisfactory and it is a simple and practical method. It provides evidences to rapidly and effective- ly evaluate the bearing capacity of subgrade.
Keywords:BP artificial neural network subgrade resilient moduli backcalculation layered elastictheory Failing Weight Deflectometer
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号