摘 要: | 考虑到人工对胃癌病理图像的判别和诊断可能存在漏检的问题,为使诊断更加准确,提出一种基于ResNet和UNet的病理图像诊断系统,旨在实现对病理图像的分类、分割以及输出诊断结果.采用ResNet模型对胃癌病理图像进行有癌和无癌的分类.对UNet模型进行改进,改进后的模型在每个下采样和上采样之前加入卷积注意力模块,以增强模型对癌变区域的关注.使用残差模块替代编码部分的2次卷积,来提高特征的利用率;利用Inception模块来替代解码部分上采样中的2个卷积,从而扩充其宽度并获取不同尺度的特征.将分类与分割结果综合考虑,获取最终的胃癌病理图像的诊断结果.实验结果表明,该系统可以有效地诊断胃癌病理图像中是否存在癌变.
|