首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于度量距离学习的图像检索方法
引用本文:罗辛,邰晓英,KITA Kenji. 一种基于度量距离学习的图像检索方法[J]. 广西师范大学学报(自然科学版), 2007, 25(2): 186-189
作者姓名:罗辛  邰晓英  KITA Kenji
作者单位:Faculty of Engineering,Tokushima University,Tokushima,Japan,770-8506;宁波大学,信息科学与工程学院,浙江,宁波,315211;Faculty of Engineering,Tokushima University,Tokushima,Japan,770-8506;Center for Advanced Information Technology,Tokushima University,Tokushima,Japan,770-8506
基金项目:日本学术振兴会科学研究费补助金基盘研究(B)(17300036)
摘    要:CBIR系统由于受图像低层特征的限制,制约了它的检索效果。机器学习和统计方法是一种有效的提高检索性能的方法,但通常需要大量的训练样本才能达到满意的检索精度。提出一种理想的距离度量函数,在对图像进行简单分类并提供少量训练样本的基础上,通过类的距离度量矩阵M的学习来考虑分量之间的相关性。这个度量导入二次最佳化问题的解,将训练样本类结构的倾斜最小化。试验结果表明,该方法能在学习样本极少的情况下提高检索的性能。

关 键 词:CBIR  聚类  距离函数  度量学习  特征空间
文章编号:1001-6600(2007)02-0186-04
收稿时间:2006-12-15
修稿时间:2006-12-15

Distance Metric Learning for Content-based Image Retrieval
LUO Xin,TAI Xiao-ying,SHISHIBORI Masami,KITA Kenji. Distance Metric Learning for Content-based Image Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2007, 25(2): 186-189
Authors:LUO Xin  TAI Xiao-ying  SHISHIBORI Masami  KITA Kenji
Affiliation:1. Faculty of Engineering ,Tokushima University ,Tokushima, 770-8506 Japan 2. Faculty of Information Science and Engineering,Ningbo University,Ningbo 315211 ,China; 3. Center for Advanced Information Technology,Tokushima University ,Tokushima, 770-8506 Japan
Abstract:The performance of a content-based image retrieval(CBIR) system is inherently constrained by the low-level features adopted to represent the images in the database.Machine learning and statistical modeling approach is a simple yet effective technique for image retrieval,but the retrieval performance is often dependent on a large number of training data.The method presents an optimal metric distance function based on a simple cluster and a little training data and by learning a distance metric M that respects these relationships.This metric is optimal in the sense of global quadratic minimization,and can be obtained from the clusters in the training data in a supervised fashion.Experiments show that the learned metrics can be used to significantly improve image retrieval performance.
Keywords:CBIR  clustering  distance function  metric learning  feature space
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号