首页 | 本学科首页   官方微博 | 高级检索  
     

利用文本数据挖掘研究p53基因表达调控网络
引用本文:舒坤贤,余庆,李津臣,吴咏竹. 利用文本数据挖掘研究p53基因表达调控网络[J]. 重庆邮电大学学报(自然科学版), 2012, 24(6): 798-803. DOI: 10.3979/j.issn.1673-825X.2012.06.025
作者姓名:舒坤贤  余庆  李津臣  吴咏竹
作者单位:1.重庆邮电大学生物信息学研究所,重庆,400065;2.重庆邮电大学生物信息学研究所,重庆,400065;3.重庆邮电大学生物信息学研究所,重庆,400065;4.重庆邮电大学生物信息学研究所,重庆,400065
基金项目:重庆市自然科学基金(CSTC,2009BB5419);重庆邮电大学博士启动基金(A2007-40;A2009-63)
摘    要:
为了研究p53基因与其下游/靶基因的关联性,以了解p53基因表达调控网络,采用文本数据挖取方法,利用自编的Perl 5.10程序,对PubMed文献数据库中p53基因相关文献及人类基因本体数据库进行数据挖掘,并利用连锁聚类法构建p53基因表达调控网络图.结果发现,目标基因的频率分布同文本中所有基因本体的频率分布存在一定的关联性,低频基因的文本挖掘比例明显低于高频基因的文本挖掘比例.从而说明,p53基因表达调控网络中各基因的分布情况与基因频率有较大关系,而文本数据量对文本数据挖掘的准确率也有重要影响.

关 键 词:文本数据挖掘  p53基因  基因本体  连锁聚类分析
收稿时间:2011-12-21

Using text data mining techniques for understanding the p53 gene expression regulatory network
SHU Kunxian,YU Qing,LI Jingcheng,WU Yongzhu. Using text data mining techniques for understanding the p53 gene expression regulatory network[J]. Journal of Chongqing University of Posts and Telecommunications, 2012, 24(6): 798-803. DOI: 10.3979/j.issn.1673-825X.2012.06.025
Authors:SHU Kunxian  YU Qing  LI Jingcheng  WU Yongzhu
Affiliation:Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
Abstract:
To study the relationship between p53 gene and its downstream/target genes in order to understand p53 network, text data mining method is used and noncommercial software written in Perl 5.10 is used to mine the database from PubMed about p53 gene and human gene ontology, and the p53 network is constructed by linkage clustering analysis. Results show that the frequency distribution of the objective gene with the gene ontology of all the text has a certain correlation, which indicates that the proportion of the low-frequency genes is significantly lower than the high-frequency genes in text data mining. This has allowed us to demonstrate that the distributions of genes in the p53 network have a greater relationship with the frequency of the genes, and meanwhile, text size has an important influence on the accuracy of the text data mining.
Keywords:text data mining   p53 gene   gene ontology   linkage clustering analysis
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号