首页 | 本学科首页   官方微博 | 高级检索  
     

开采沉陷反分析的神经网络方法研究
引用本文:王卫华 丁德馨. 开采沉陷反分析的神经网络方法研究[J]. 南华大学学报(自然科学版), 2001, 15(1): 10-14
作者姓名:王卫华 丁德馨
作者单位:南华大学建筑工程与环境资源学院;南华大学建筑工程与环境资源学院
摘    要:建立了沉陷反分析的神经网络模型,并用基于正交试验获得的训练样本对网络进行学习,以此训练好的神经网络模型来描述岩体力学参数与开采沉陷之间的关系,利用反演结果,建立拉格朗日快速计算法(FLAC)模型,对地表沉陷进行预测,其预测结果是令人满意的。

关 键 词:开采沉陷  沉陷反分析  误差反传神经网络
文章编号:1006-737X(2001)01-0010-05
修稿时间:2000-12-13

Studies of an Artificial Neural Network Method for Inversing Mechanical Parameters of Rock Mass from Measured Mining-Induced Surface Subsidence
WANG Wei-hu,DING De-xin. Studies of an Artificial Neural Network Method for Inversing Mechanical Parameters of Rock Mass from Measured Mining-Induced Surface Subsidence[J]. Journal of Nanhua University(Science and Technology), 2001, 15(1): 10-14
Authors:WANG Wei-hu  DING De-xin
Abstract:An ANN model for inversing mechamical parameters of rock mass from measured surface subsidence induced by underground mining has been established.The network was trained with input-output data pairs obtained from FLAC simulation based on the orthogonal tests.The trained network provided the relation between mechanical parameters of the rock mass and the surface subsidence induced by underground mining and was used to inverse the mechanical parameters of the rock mass.The inversion results were in turn used as input parameters of a FLAC model predicting the mining-induced surface subsidence.The prediction was in good agreement with the measured subsidence.
Keywords:mining-induced surface subsidence  back analysis  aritificial neural networks
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《南华大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《南华大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号