摘 要: | 随着大数据时代的到来,如何快速、准确地从海量数据中挖掘有用的信息成为一个极其关键的问题。随着样本数据维度和数量的增加,导致K-Means聚类算法的计算成本急剧增加。因此,一种新颖的加速精确K-Means聚类算法近期被用来降低计算成本,称为“Ball K-Means”。尽管Ball K-Means降低了计算成本,但是该算法和K-Means算法都缺乏全局搜索能力。因此,本文从全局搜索能力和计算成本两个因素考虑,通过在Ball K-Means算法中引入一种防止聚类过程过早收敛的探索向量,提出一种针对高维度、大样本数据的基于探索向量的Ball K-Means聚类算法,称为“Ball XK-Means”。实验结果表明,在高维度和大样本数据下,本文提出的算法不仅比Ball K-Means和K-Means算法能够获更稳定和更精确的聚类结果,而且比K-Means和XK-Means算法有更低的计算成本和更高的效率。
|