首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
函数空间[X→L]上若干拓扑之间的关系
作者姓名:
原雅燕
梁基华
作者单位:
四川大学数学学院,成都,610064
摘 要:
作者讨论在函数空间上Isbell拓扑和Scott拓扑何时一致的问题,给出了以下主要定理:设L 是带有性质m的含最小元的连续domain,则函数空间[X→ L]上Scott拓扑与Isbell拓扑对于所有核紧空间X一致当且仅当连续domain L是有界完备domain.
关 键 词:
函数空间
Isbell拓扑
Scott拓扑
连续L-domain
本文献已被
万方数据
等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号