首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF网络的虚拟仪表人机界面评价方法
引用本文:颜声远,于晓洋,张志俭,彭敏俊,杨明. 基于RBF网络的虚拟仪表人机界面评价方法[J]. 系统仿真学报, 2007, 19(24): 5731-5735
作者姓名:颜声远  于晓洋  张志俭  彭敏俊  杨明
作者单位:1. 哈尔滨理工大学,仪器科学与技术博士后科研流动站,哈尔滨,150080;哈尔滨工程大学,机电工程学院,哈尔滨,150001;哈尔滨工程大学,核科学与技术学院,核动力仿真研究中心,哈尔滨,150001
2. 哈尔滨理工大学,仪器科学与技术博士后科研流动站,哈尔滨,150080
3. 哈尔滨工程大学,核科学与技术学院,核动力仿真研究中心,哈尔滨,150001
基金项目:黑龙江省博士后科研启动基金
摘    要:
提出了基于RBF网络的虚拟仪表人机界面主观评价方法和评价指标。利用RBF网络的自组织、自学习与自适应特性对网络进行训练,使网络学习隐含在训练数据中的人机界面主观评价指标的权重规律,自适应调整主观评价指标的权重,克服了主观赋权法的随机性因素影响。建立了虚拟光柱表人机界面,开发了基于RBF网络的虚拟光柱表人机界面主观评价模型;对训练样本数为50,75和100的三组虚拟仪表网络模型进行了误差分析。分析结果表明,采用75个训练样本可以得到满意的主观评价精度。

关 键 词:主观评价  人机界面  RBF网络  虚拟仪表  光柱表
文章编号:1004-731X(2007)24-5731-05
收稿时间:2006-10-07
修稿时间:2007-01-05

Evaluation Method of Human-Machine Interface of Virtual Meter Based on RBF Network
YAN Sheng-yuan,YU Xiao-yang,ZHANG Zhi-jian,PENG Min-jun,YANG Ming. Evaluation Method of Human-Machine Interface of Virtual Meter Based on RBF Network[J]. Journal of System Simulation, 2007, 19(24): 5731-5735
Authors:YAN Sheng-yuan  YU Xiao-yang  ZHANG Zhi-jian  PENG Min-jun  YANG Ming
Abstract:
A novel subjective evaluation approach for evaluating the human-machine interface of virtual meters based on RBF neural network as well as the evaluation indexes were proposed. By using the self-organizing, self-learning and self-adapting properties of RBF neural networks, the regularity of subjective evaluation indexes weight concealed in the training data could be learned by means of RBF neural networks automatically adjusting indexes weight of subjective evaluation, and therefore the influence of randomicity could be overcome. In order to validate the proposed method, a human-machine interface of virtual bargraph meters was developed and the subjective evaluation model of virtual bargraph meter was established. Error analysis of the subjective evaluation model for three groups of virtual bargraph meters was performed by using 50, 75, and 100 training samples, respectively. Analysis results show that the subjective evaluation model by using 75 training samples is of satisfied accuracy.
Keywords:subject evaluation   human-machine interface   RBF neural network   virtual meter   bargraph meter
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号