首页 | 本学科首页   官方微博 | 高级检索  
     

一种具有自动聚类检测功能的欠定型盲信号混叠矩阵估计算法
引用本文:余莎丽,田森平. 一种具有自动聚类检测功能的欠定型盲信号混叠矩阵估计算法[J]. 科学技术与工程, 2014, 14(3)
作者姓名:余莎丽  田森平
作者单位:华南理工大学广州学院,华南理工大学
基金项目:广东省自然科学基金S2012010009675
摘    要:针对源信号个数未知情况下的欠定稀疏分量分析模型,提出一种具有自动聚类检测功能的混叠矩阵估计算法。提出实现源信号个数的判定的观测信号自动检测聚类方法,同时利用主成分分析对超直线进行估计,从而实现混叠矩阵的精确估计。仿真实验结果表明,该算法适用范围广,是一种快速精确且稳健的混叠矩阵估计算法。

关 键 词:稀疏分量分析  源信号正交性假设  噪声
收稿时间:2013-07-31
修稿时间:2013-09-14

A New Matrix Clustering Algorithm with Auto Detection for Underdetermined Sparse Component Analysis
yu sha li and tian sen ping. A New Matrix Clustering Algorithm with Auto Detection for Underdetermined Sparse Component Analysis[J]. Science Technology and Engineering, 2014, 14(3)
Authors:yu sha li and tian sen ping
Affiliation:South China University of Technology
Abstract:To the underdetermined sparse component analysis (SCA) model with unknown sources number, a new robust clustering algorithm with auto detect function for mixture matrix estimation is addressed in this paper. This approach consists of two parts: signal clustering and mixing matrix estimation. In the first step, we propose a probability criterion for sources number detection, which stems from deduction by using a fit mathematical statistics model. To the second stage, Principal Component Analysis (PCA) is introduced to the mixing matrix estimation. Experiment simulations illustrate the effectiveness of the new clustering algorithm.
Keywords:Sparse Component Analysis (SCA)   orthgonal condition of sources   noise
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号