首页 | 本学科首页   官方微博 | 高级检索  
     

基于CEEMD-BP模型的水文时间序列月径流预测
引用本文:王栋,魏加华,章四龙,初海波. 基于CEEMD-BP模型的水文时间序列月径流预测[J]. 北京师范大学学报(自然科学版), 2020, 56(3): 376-386. DOI: 10.12202/j.0476-0301.2020174
作者姓名:王栋  魏加华  章四龙  初海波
作者单位:1.北京师范大学水科学研究院,城市水循环与海绵城市技术北京市重点实验室,100875,北京
基金项目:青海省重点研发与转化计划资助项目(2019-SF-146);青海省自然科学基金资助项目(2019-ZJ-941Q)
摘    要:水文时间序列月径流预测在水资源的规划与管理方面具有重要的作用,由于径流序列的非线性和非平稳性,对其准确地进行预测较为困难.本文基于1956—2013年青海湟水河流域月径流序列,将完备的集合经验模态分解方法(complete ensemble empirical mode decomposition, CEEMD)与BP神经网络组合进行月径流预测.结果表明:组合模型CEEMD-BP和EEMD-BP相比于单一的BP神经网络,可以更好地保留原始数据的信息,预测效果更好,其中CEEMD-BP在组合模型中的预测精度更高,可用于水文时间序列月径流预测.

关 键 词:径流预测  EEMD-BP模型  CEEMD-BP模型  BP神经网络
收稿时间:2019-11-26

Hydrological temporal series of monthly runoff prediction by CEEMD-BP model
Affiliation:1.Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, 100875, Beijing, China2.Skate Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 810016, Xining, Qinghai, China3.Skate Key Laboratory of Hydroscience and Engineering, Tsinghua University, 100084, Beijing, China
Abstract:Monthly hydrological time series prediction plays an important role in the planning and management of water resources. Due to nonlinear and non-stationary nature of runoff sequences, it is difficult to predict accurately. Runoff sequence in the Huangshui River Basin of Qinghai Province from 1956 to 2013 was used to predict monthly runoff, combining complete ensemble empirical mode decomposition method (CEEMD) with BP neural network. The combined EEMD-BP and CEEMD-BP models were found to retain original data information better compared to single BP neural network, and prediction performance was better. CEEMD-BP was found to have better prediction accuracy in the combined model for hydrological monthly runoff prediction. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《北京师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号