首页 | 本学科首页   官方微博 | 高级检索  
     

梁挠曲线方程的精确推导
引用本文:刘海波1,2,刘玉丽3,石祥锋2. 梁挠曲线方程的精确推导[J]. 华侨大学学报(自然科学版), 2018, 0(6): 840-843. DOI: 10.11830/ISSN.1000-5013.201804058
作者姓名:刘海波1  2  刘玉丽3  石祥锋2
作者单位:1. 北京科技大学 土木与环境工程学院, 北京 100083;2. 华北科技学院 建筑工程学院, 北京 101601;3. 华北科技学院 理学院, 北京 101601
摘    要:采用数学工具,在不忽略任何高阶微量的基础上,修改原有近似的挠曲线方程,推导出更精确、更符合实际的方程式.通过有限元法验证该方程的可靠性,结果表明:传统的计算方法误差较大,且误差随着梁的跨度、横截面、荷载大小、抗弯刚度变化而变化;文中方法得到的误差较小.

关 键 词:挠曲线  挠度  弯矩  曲率  有限元法

Precise Derivation of Beam Deflection Equation
LIU Haibo1,' target="_blank" rel="external">2,LIU Yuli3,SHI Xiangfeng2. Precise Derivation of Beam Deflection Equation[J]. Journal of Huaqiao University(Natural Science), 2018, 0(6): 840-843. DOI: 10.11830/ISSN.1000-5013.201804058
Authors:LIU Haibo1,' target="  _blank"   rel="  external"  >2,LIU Yuli3,SHI Xiangfeng2
Affiliation:1. School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Architectural Engineering College, China Institute of Science and Technology, Beijing 101601, China; 3. College of Science, North China Institute of Science and Technology, Beijing 101601, China
Abstract:Using mathematical tools, without neglecting any high-order infinitesimals, the existed approximate deflection equation is modified, a more accurate and realistic equation is derived. The reliability of the equation is verified by finite element method. The results show that the traditional calculation error is obvious, the error varies for different the beam spans, cross sections, the values of the load and bending stiffness, the error of presented method is small.
Keywords:deflection curve  deflection  bending moment  curvature  finite element method
本文献已被 CNKI 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号