首页 | 本学科首页   官方微博 | 高级检索  
     

汽轮发电机多故障诊断的SOM神经网络方法
引用本文:张彼德,欧健,孙才新,王柯柯,潘凌. 汽轮发电机多故障诊断的SOM神经网络方法[J]. 重庆大学学报(自然科学版), 2005, 28(2): 36-38
作者姓名:张彼德  欧健  孙才新  王柯柯  潘凌
作者单位:西华大学,电气信息学院,成都,610039;重庆工学院,车辆工程学院,重庆,400050;重庆大学,高电压与电工新技术教育部重点实验室,重庆,400030;重庆大学,高电压与电工新技术教育部重点实验室,重庆,400030;重庆工学院,车辆工程学院,重庆,400050
基金项目:重庆市应用基础研究基金
摘    要:汽轮发电机组的振动故障具有多样性的特点,经常出现多种故障同时发生的情况.传统的BP神经网络方法可对单一故障有效诊断,若要对多故障进行诊断,则需对各种多故障样本进行学习,使输入空间在训练过程中被样本空间完全覆盖,将大大增加样本空间及学习训练负担,同时网络归纳、联想能力随之大幅度下降,诊断难以实施.因此,将自组织特征映射(SOM)神经网络应用于汽轮发电机组的振动多故障诊断,用单一故障样本对网络进行训练,根据输出神经元在输出层的位置对多故障进行判断.经实例分析证明,该方法可对多故障进行有效诊断.

关 键 词:汽轮发电机组  振动多故障  SOM神经网络
文章编号:1000-582X(2005)02-0036-03
修稿时间:2004-10-15

Applications of SOM Neural Network in Multiple-faults Diagnosis of Turbogenerator Set
ZHANG Bi-de,OU Jian,SUN Cai-xin,WANG Ke-ke,PAN Ling. Applications of SOM Neural Network in Multiple-faults Diagnosis of Turbogenerator Set[J]. Journal of Chongqing University(Natural Science Edition), 2005, 28(2): 36-38
Authors:ZHANG Bi-de  OU Jian  SUN Cai-xin  WANG Ke-ke  PAN Ling
Abstract:The turbogenerator vibration faults have the character of variety. Many faults often occur synchronously. The traditional BP neural network can diagnose the single fault effectively. If we diagnose the multiple faults by using the BP neural network, we must train all samples of multiple faults, which is will increase the number of training samples and the burden of learning greatly. So the diagnosis can not be performed easily. This paper introduces a method based on SOM neural network, which is studied by using the single sample and diagnosing the multiple faults according to the position of output nerve cell. By analyzing the examples, the method is proved to be available for diagnosing the multiple faults of Turbogenerator set.
Keywords:turbogenerator  vibration multiple faults  SOM neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号