摘 要: | 医疗文本具有实体密度高、句式冗长等特点,简单的神经网络方法不能很好地捕获其语义特征,因此提出一种基于预训练模型的混合神经网络方法。首先使用预训练模型获取动态词向量,并提取实体标记特征;然后通过双向长短期记忆网络获取医疗文本的上下文特征,同时使用卷积神经网络获取文本的局部特征;再使用注意力机制对序列特征进行加权,获取文本全局语义特征;最后将实体标记特征与全局语义特征融合,并通过分类器得到抽取结果。在医疗领域数据集上的实体关系抽取实验结果表明,新提出的混合神经网络模型的性能比主流模型均有提升,说明这种多特征融合的方式可以提升实体关系抽取的效果。
|