首页 | 本学科首页   官方微博 | 高级检索  
     

改进Stacking算法的光伏发电功率预测
引用本文:李鹏钦,张长胜,李英娜,李川. 改进Stacking算法的光伏发电功率预测[J]. 应用科学学报, 2021, 40(2): 288-301. DOI: 10.3969/j.issn.0255-8297.2022.02.011
作者姓名:李鹏钦  张长胜  李英娜  李川
作者单位:昆明理工大学 信息工程与自动化学院, 云南 昆明 650500
基金项目:国家自然科学基金(No. 61963022, No. 51665025, No. 61962031)资助
摘    要:针对Stacking算法计算时间较长和样本数据较少的问题,提出了一种基于新向量表示和交叉验证精度加权的改进Stacking算法。采用三层算法结构,第1、2层为初级层,使用随机森林、SVR、XGBoost 3个学习器;第3层为次级层,使用LightGBM对第2层输出再次学习以减弱噪声。用一种新的向量表示法来增大层级之间输入输出数据的样本规模和样本分布密度,来保证数据维度不会随着初级层学习器数目的增多而增大;根据在交叉验证下初级层不同预测模型表现出预测准确度的差异性对结果进行加权处理。利用某光伏电站的发电数据进行实际算例分析,提出的模型在MAE、MSE及$R^2$指标上,相比随机森林和Stacking等模型其预测性能有很大的提升。

关 键 词:Stacking算法  交叉验证  向量表示  回归预测算法  光伏发电预测  
收稿时间:2021-01-25

Photovoltaic Power Forecast Improved Stacking Algorithm
LI Pengqin,ZHANG Changsheng,LI Yingna,LI Chuan. Photovoltaic Power Forecast Improved Stacking Algorithm[J]. Journal of Applied Sciences, 2021, 40(2): 288-301. DOI: 10.3969/j.issn.0255-8297.2022.02.011
Authors:LI Pengqin  ZHANG Changsheng  LI Yingna  LI Chuan
Affiliation:Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
Abstract:Stacking algorithm is good at alleviating over fitting problem in the prediction of photovoltaic power generation, but with drawbacks of long computation time and less sample data. To solve the problem, this paper proposes an improved 3-layer stacking algorithm based on new vector representation and cross validation accuracy weighting. The first and second layers are the primary layer, which use random forest, SVR and XGboost3. The third layer is the secondary layer, and uses LightGBM to learn the output of the second layer again to reduce noise. A new vector representation method is used to increase the sample size and sample distribution density of input and output data between levels to ensure that the data dimension will not increase with the increase of the number of primary level learners. At the same time, the results are weighted according to the difference in the prediction accuracy of different prediction models in the primary layer under cross-validation. Practical analysis is demonstrated by using the power generation data of a photovoltaic power station. Compared with random forest model and Stacking model, the prediction performance of the proposed model has been greatly improved in MAE, MSE and R-Squared.
Keywords:Stacking algorithm  cross validation  vector representation  regression prediction algorithm  photovoltaic power generation forecast  
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号