首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像分类的鲁棒无载体信息隐藏
作者姓名:董腾林  李欣然  姚恒  秦川
作者单位:上海理工大学 光电信息与计算工程学院, 上海 200093
基金项目:国家自然科学基金(No.U20B2051,No.61702332)资助
摘    要:针对传统信息隐藏方法须通过修改载体以嵌入秘密信息所带来的安全性问题,提出一种基于图像分类与尺度不变特征转换(scale-invariant feature transform,SIFT)提取无载体信息隐藏的方法。首先通过快速区域卷积神经网络将原始图像库进行分类处理,生成不同种类的子图像库;然后利用图像SIFT特征点的方向信息设计一个感知鲁棒的哈希方案,并使用该方案计算出每个子图像库中图像的哈希值,将所有子图像库中的图像全部映射成相应的二进制哈希值;最后将秘密信息分割成若干个片段,通过对比秘密信息片段与所有的图像二进制哈希值,从子图像库中检索出与秘密信息片段相符的图像,将其作为含密图像传送给接收方,完成信息隐藏过程。接收方接收到全部含密图像后,根据约定的哈希方案提取秘密信息。实验结果和分析表明,该方法对JPEG压缩、高斯噪声、椒盐噪声、图像缩放等攻击具有较强的鲁棒性,且隐藏容量较高。

关 键 词:无载体信息隐藏  图像分类  图像哈希  鲁棒性  隐藏容量  
收稿时间:2020-09-06
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号