首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络的并行强化学习自适应路径规划
引用本文:耿晓龙. 基于人工神经网络的并行强化学习自适应路径规划[J]. 科学技术与工程, 2011, 11(4): 756-759
作者姓名:耿晓龙
作者单位:西北工业大学,西安,710129
摘    要:强化学习是通过对环境的反复试探建立起从环境状态到行为动作的映射。利用人工神经网络的反馈进行权值的调整,再与高学习效率的并行强化学习算法相结合,提出了基于人工神经网络的并行强化学习的应用方法,并通过实验仿真验证了迭代过程的收敛性和该方法的可行性,从而有效地完成了路径学习。

关 键 词:并行强化学习  BP神经网络  路径规划  Q学习
收稿时间:2010-11-15
修稿时间:2010-11-24

Application of parallel reinforcement learning based on artificial neural network to adaptive Path Planning
gengxiaolong. Application of parallel reinforcement learning based on artificial neural network to adaptive Path Planning[J]. Science Technology and Engineering, 2011, 11(4): 756-759
Authors:gengxiaolong
Affiliation:GENG Xiao-long,LI Chang-jiang(Northwestern Polytechnical University,Xi'an 710129,P.R.China)
Abstract:Reinforcement learning is an important class of learning techniques that learns to perform a certain task through trial and error interactions with an knowledge-poor environment.By combining artificial neural network with parallel reinforcement learning,an applicable method of parallel reinforcement learning algorithm based on artificial neural network is proposed.Experimental results show that the method is effective.
Keywords:parallel reinforcement learning BP neural network path plan Q learning  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号