首页 | 本学科首页   官方微博 | 高级检索  
     

基于IOWA算子的短时交通流预测方法研究
引用本文:林德花. 基于IOWA算子的短时交通流预测方法研究[J]. 科学技术与工程, 2013, 13(25)
作者姓名:林德花
作者单位:北京交通大学城市交通复杂系统理论与技术教育部重点实验室
基金项目:国家重点基础研究发展计划资助课题(编号2012CB725403)
摘    要:
本文首次将诱导有序加权平均(IOWA)算子应用到短时交通流预测中,建立了以整体预测误差平方和最小为目标的组合预测模型。在分析短时交通流预测模型的基础上,本文选取了指数平滑法、季节自回归求和移动平均模型(SARIMA)、BP神经网络模型对短时交通流进行预测,再用IOWA算子将这三种模型进行组合预测。最后进行实例验证,通过MAE、MSE和MAPE三项指标比较分析四种模型的预测效果。结果证明,IOWA算子组合预测模型明显优于其他的预测模型,有效地提高了短时交通流的预测精度。

关 键 词:短时交通流预测 IOWA 指数平滑法 SARIMA BP神经网络
收稿时间:2013-05-07
修稿时间:2013-05-07

Research on short-term traffic flow forecasting Method Based on IOWA Operator
LinDehua. Research on short-term traffic flow forecasting Method Based on IOWA Operator[J]. Science Technology and Engineering, 2013, 13(25)
Authors:LinDehua
Abstract:
The induced ordered weighted averaging(IOWA) operator is applied to the short-term traffic flow forecasting at the first time, and a combination forecasting model is established as a goal of minimizing the whole error square. By the analysis of short-term traffic flow forecasting model, this paper selects the exponential smoothing method , seasonal autoregressive integrated moving average model (SARIMA) and BP neural network model to forecast the short-term traffic flow, then uses IOWA operator to combine the three models to forecast the short-term traffic flow. Finally, taking the practical traffic data as the example, this paper compares and analyses the effects of four kinds of prediction models by the three indices :MAE,MSE and MAPE. It proves that IOWA operator combination prediction model is superior to other models, effectively improving the prediction accuracy of short-term traffic flow.
Keywords:short-time traffic flow forecasting IOWA exponential smoothing method SARIMA BP neural network
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号