首页 | 本学科首页   官方微博 | 高级检索  
     

基于核主成分分析与最小二乘支持向量机结合处理时间序列预测问题
引用本文:郭辉,王玲,刘贺平. 基于核主成分分析与最小二乘支持向量机结合处理时间序列预测问题[J]. 北京科技大学学报, 2006, 28(3): 303-306
作者姓名:郭辉  王玲  刘贺平
作者单位:北京科技大学信息工程学院,北京,100083
基金项目:高比容电子铝箔的研究开发与应用项目 , 北京市教委重点学科建设项目
摘    要:
探讨了最小二乘支持向量机时间序列预测的方法,提出了用核主成分分析提取主元,然后用最小二乘支持向量机进行预测.通过实验表明,这种方法得到的效果优于没有特征提取的预测.同时与主成分分析提取特征相比,用核主成分分析效果更好.

关 键 词:主成分分析  最小二乘支持向量机  核主成分分析  时间序列预测  核主成分分析  最小  支持向量机  结合  处理  时间序列  预测问题  problems  time series forecasting  support vector machines  least squares  principal component analysis  kernel  分析效果  提取特征  特征提取  预测的方法  实验  主元
收稿时间:2005-01-24
修稿时间:2005-11-17

Integrating kernel principal component analysis with least squares support vector machines for time series forecasting problems
GUO Hui,WANG Ling,LIU Heping. Integrating kernel principal component analysis with least squares support vector machines for time series forecasting problems[J]. Journal of University of Science and Technology Beijing, 2006, 28(3): 303-306
Authors:GUO Hui  WANG Ling  LIU Heping
Affiliation:Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China
Abstract:
This paper discusses least squares support vector machines(LSSVM)in the time series fore- casting problem.Kernel principal component analysis(KPCA)is proposed to calculate principal compo- nent.Least squares support vector machines are applied to predict time series.Experimental results show that the performance of LSSVM with feature extraction using KPCA is much better than that without fea- ture extraction.In comparison with PCA,there is also superior performance in KPCA.
Keywords:principal component analysis(PCA)  least squares support vector machines(LSSVM)  kernel principal component analysis(KPCA)  time series forecasting  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号