首页 | 本学科首页   官方微博 | 高级检索  
     

基于MapReduce和改进人工蜂群算法的并行划分聚类算法
作者姓名:陶涛  毛伊敏
作者单位:江西理工大学信息工程学院,赣州341000
基金项目:国家重点研发计划项目(No. 2018YFC1504705); 国家自然科学基金项目(No.41562019)
摘    要:针对大数据背景下基于划分的聚类算法中存在参数寻优能力不佳、初始中心敏感、数据倾斜等问题,提出一种基于MapReduce和人工蜂群(artificial bee colony,ABC)算法的并行划分聚类(the partitioning-based clustering algorithm by using im-prove artificial bee colony based on MapReduce,MR-PBIABC)算法.首先,提出基于反向学习和聚类准则函数的初始化策略(backward learning and the clustering criterion function,BLCCF),提升人工蜂群算法搜索的解质量,并将ABC算法和人工鱼群(artificial fish colony,AFS)算法结合,提出改进人工蜂群(improve artificial bee colony,IABC)算法,通过利用AFS算法最优解能力较强的特性,来提高ABC算法的寻优能力;其次,根据改进的人工蜂群算法IABC获取初始聚类中心,提出相对熵策略(rela-tive entropy strategy,RES)衡量人工鱼间的距离,保证获得的初始聚类中心是最优人工鱼状态,从而有效避免了随机选取初始聚类中心,引起的初始中心敏感的问题;再次,设计数据均衡策略(data balancing strategy,DBS),通过动态收集节点负载并分配节点间的负载,解决了节点上数据倾斜的问题;最后,结合MapReduce计算模型,并行挖掘簇中心,生成最终聚类结果.实验结果表明,MR-PBIABC算法的聚类效果更佳,同时在大数据环境下,能有效地提高并行计算的效率.

关 键 词:大数据  并行化聚类  人工蜂群(ABC)算法  人工鱼群(AFS)算法  MapReduce
收稿时间:2021-01-04
修稿时间:2021-05-21
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号