首页 | 本学科首页   官方微博 | 高级检索  
     

基于GPU的并行拟牛顿神经网络训练算法设计
作者姓名:刘强  李佳峻
作者单位:天津大学微电子学院;天津市成像与感知微电子技术重点实验室
基金项目:国家自然科学基金(61574099)
摘    要:针对人工神经网络训练需要极强的计算能力和高效的最优解搜寻方法的问题,提出基于GPU的BFGS拟牛顿神经网络训练算法的并行实现。该并行实现将BFGS算法划分为不同的功能模块,针对不同模块特点采用混合的数据并行模式,充分利用GPU的处理和存储资源,取得较好的加速效果。试验结果显示:在复杂的神经网络结构下,基于GPU的并行神经网络的训练速度相比于基于CPU的实现方法最高提升了80倍;在微波器件的建模测试中,基于GPU的并行神经网络的速度相比于Neuro Modeler软件提升了430倍,训练误差在1%左右。

关 键 词:神经网络  GPU  并行计算  拟牛顿算法  OpenCL  加速算法
本文献已被 CNKI 等数据库收录!
点击此处可从《河海大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《河海大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号