首页 | 本学科首页   官方微博 | 高级检索  
     

基于聚类的神经网络规则抽取算法
引用本文:张仲明,于明光,郭东伟. 基于聚类的神经网络规则抽取算法[J]. 吉林大学学报(信息科学版), 2010, 28(5): 506-512. DOI: 10.3969/j.issn.1671-5896.2010.05.012
作者姓名:张仲明  于明光  郭东伟
作者单位:吉林大学,计算机科学与技术学院,长春,130012;吉林大学,计算机科学与技术学院,长春,130012;吉林大学,计算机科学与技术学院,长春,130012
摘    要:为了从人工神经网络中抽取规则,提出一种新的规则抽取算法。网络被训练并剪枝后,将隐节点的激活值离散化,对输入到隐节点的权重进行聚类,聚类过程中可根据隐节点的激活值动态调整权值聚类数目,进而高效准确地抽取规则。实验结果表明,该算法可明显降低规则抽取的时间复杂度,减少生成规则的数量。

关 键 词:规则抽取  神经网络  聚类

Rules Extraction from Artificial Neural Network Based on Clustering
ZHANG Zhong-ming,YU Ming-guang,GUO Dong-wei. Rules Extraction from Artificial Neural Network Based on Clustering[J]. Journal of Jilin University:Information Sci Ed, 2010, 28(5): 506-512. DOI: 10.3969/j.issn.1671-5896.2010.05.012
Authors:ZHANG Zhong-ming  YU Ming-guang  GUO Dong-wei
Affiliation:College of Computer Science and Technology, Jilin University,Changchun 130012,China
Abstract:We propose a novel algorithm for extracting rules from artificial neural network. After the network is trained and pruned successfully, the activation values at the hidden unit are clustered into discrete values. In the cluster phase, the cluster number of weights can be adjusted dynamically according to activation values of their corresponding hidden units. The experiment results have shown its feasibility and accuracy, and prove that this algorithm decreases the complexity of rules extraction and makes the number of the extracted rules small.
Keywords:extracting rules  artificial neural network  clustering  
本文献已被 万方数据 等数据库收录!
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号