摘 要: | 现代拟合优度频谱感知算法直接采用信号的样本或能量作为拟合统计量,对独立的接收信号表现出良好的检测性能,对相关信号则表现不出令人满意的效果.基于最大特征值的拟合优度频谱感知算法可表现出更好的检测性能,但是基于最大特征值的拟合优度算法是半盲检测算法,需要已知噪声的功率,这在实际应用中是难以实现的.为此,提出了新的基于最大最小特征值的全盲拟合优度频谱感知算法.同时基于随机矩阵理论成果,推导分析了新算法的检测概率、虚警概率和判决门限.实验结果表明,新算法有效克服了噪声不确定性问题,相对于其他拟合优度检测算法性能有所提升.
|