摘 要: | 面对不断进步的图像编辑技术,发展相应的图像取证技术显得尤为重要.针对现有图像篡改检测技术中存在的可检测操作类型单一、鲁棒性不强、篡改区域定位不足等问题,提出一种基于卷积神经网络的多操作图像篡改检测方案.在该网络中,通过构造基于残差块的卷积流以提取操作特征.然后,设计一个多尺度特征融合模块,实现不同尺寸的操作特征融合.最后,将融合后的操作特征输入多分支预测模块进行篡改类型预测与定位,得到多操作检测结果.本文制作了多操作图像篡改数据集,对提出的网络模型进行训练和测试.实验结果表明,本文方案与主流的目标检测网络相比,能够更准确地对篡改区域进行定位,参数量更少,且对常见的图像后处理具有更好的鲁棒性.
|