首页 | 本学科首页   官方微博 | 高级检索  
     

基于离散粒子群优化的MPSoC节能调度算法
引用本文:于国龙,崔忠伟,左 羽. 基于离散粒子群优化的MPSoC节能调度算法[J]. 江西师范大学学报(自然科学版), 2016, 40(3): 307-311
作者姓名:于国龙  崔忠伟  左 羽
作者单位:贵州师范学院数学与计算机科学学院,贵州省高校工业物联网工程技术研究中心,贵州 贵阳 550018
摘    要:为了降低多核片上系统MPSoC在应用中的能耗,在MPSoC上提出了基于优化离散粒子群算法的节能任务调度算法.通过比例选择算子生成初始种群,以任务在MPSoC上不同内核执行的能耗作为解空间,粒子群在整个解空间上搜索最低能耗调度方案,并在算法中优化了粒子群算法的局部早熟问题,使算法性能进一步提升.仿真实验表明:基于优化离散粒子群算法的节能调度算法与常用的3种调度算法相比,能耗得到了降低,且算法的截止期错失率并没有升高,保证了算法的整体性能.

关 键 词:粒子群算法  多处理器片上系统  节能  调度算法

MPSoC Energy Saving Scheduling Algorithm Based on Discrete Particle Swarm Optimization
YU Guolong,CUI Zhongwei,ZUO Yu. MPSoC Energy Saving Scheduling Algorithm Based on Discrete Particle Swarm Optimization[J]. Journal of Jiangxi Normal University (Natural Sciences Edition), 2016, 40(3): 307-311
Authors:YU Guolong  CUI Zhongwei  ZUO Yu
Affiliation:School of Mathematics and Computer Science,Guizhou Province University Industrial Networking Engineering Technology Research Center,Guizhou Normal College,Guiyang Guizhou 550018,China
Abstract:In order to reduce the energy consumption of the MPSoC in the application,a energy saving task scheduling algorithm based on the optimization of discrete particle swarm optimization is proposed in MPSoC.The algorithm generates the initial population by the proportional selection operator,and takes the energy consumption of different cores on the MPSoC as the solution space,search for the lowest energy consumption scheduling scheme in the whole solution space and optimize local premature problem of the particle swarm optimization algorithm.Through these improve the performance of the algorithm.The simulation experiments show that the energy of saving scheduling algorithm based on the optimized discrete particle swarm optimization algorithm is lower than that of the common three algorithms,and the deadline miss rate of the algorithm does not increase,that ensure the overall performance of the algorithm.
Keywords:particle swarm optimization  MPSoC  energy saving  scheduling algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《江西师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《江西师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号