首页 | 本学科首页   官方微博 | 高级检索  
     

边界元矩阵稀疏化算法及其应用
引用本文:崔树标,张云,周华民,李德群. 边界元矩阵稀疏化算法及其应用[J]. 上海交通大学学报, 2008, 42(10): 1618-1621
作者姓名:崔树标  张云  周华民  李德群
作者单位:(华中科技大学 模具技术国家重点实验室, 武汉 430074)
基金项目:国家自然科学基金,国家自然科学基金
摘    要:基于边界元矩阵的空间需求与求解域网格数的平方成正比,提出了边界元矩阵稀疏化方法.首先,根据边界元矩阵的特点定义了合适的稀疏准则,小于该准则的矩阵系数被合并到邻接单元对应的矩阵系数中;然后,将该系数取零,这样可以将一片相互邻接的单元系数合并到其中一个单元,从而达到矩阵稀疏化的目的.仿真结果表明,该方法在保证数值模拟精度的条件下,大幅削减了空间需求.

关 键 词:稀疏矩阵   边界元法  
收稿时间:2007-11-10

Research and Application of Sparse Algorithm of Boundary Element Matrix
CUI Shu-biao,ZHANG Yun,ZHOU Hua-min,LI De-qun. Research and Application of Sparse Algorithm of Boundary Element Matrix[J]. Journal of Shanghai Jiaotong University, 2008, 42(10): 1618-1621
Authors:CUI Shu-biao  ZHANG Yun  ZHOU Hua-min  LI De-qun
Affiliation:(State Key Laboratory of Die & Mould Technology,
Huazhong University of Science & Technology, Wuhan 430074, China)
Abstract:A method was brought forward to make the matrix become sparser because the memory space of the boundary element matrix is in direct proportion to the square of mesh number. An appropriate rule of sparsity is defined according to the characteristic of boundary element matrix at first. The matrix coefficients which are less than certain limit value are united into the adjacent elements. Afterward the matrix coefficient was evaluated as zero. And the matrix coefficient of partial adjacent elements can be incorporated into certain element by using this method. Then the boundary element matrix becomes a sparse one. By using this method, the memory space is reduced observably while guaranteeing the numerical simulation accuracy through numerical simulation.
Keywords:sparse matrix  boundary element method  injection mold
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《上海交通大学学报》浏览原始摘要信息
点击此处可从《上海交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号