首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的混沌系统状态预测
引用本文:程广平,汪波. 基于神经网络的混沌系统状态预测[J]. 系统仿真学报, 2007, 19(5): 1173-1175
作者姓名:程广平  汪波
作者单位:天津大学管理学院,天津,300072
摘    要:在对混沌时间序列的未来状态进行预测时,必须能够正确确定重构序列相空间时的最优时滞及最优嵌入维数,并根据序列状态的变化选定适当的模型进行预测。利用时间序列的自相关函数来确定时滞τ值,利用混沌序列嵌入维数与关联维数的关系来确定最优嵌入维数m值。在此基础上,选择神经网络模型来逼近真实系统,并采用一种新的算法来确定网络权重。最后,通过Logistic映射所产生的时间序列对所述理论进行了实证研究。

关 键 词:混沌  自相关函数  最优嵌入维数  最优时滞  Logistic映射
文章编号:1004-731X(2007)05-1173-03
收稿时间:2006-01-06
修稿时间:2006-12-03

State Prediction of Chaotic System Based on ANN Model
CHENG Guang-ping,WANG Bo. State Prediction of Chaotic System Based on ANN Model[J]. Journal of System Simulation, 2007, 19(5): 1173-1175
Authors:CHENG Guang-ping  WANG Bo
Affiliation:School of Management, Tianjin University, Tianjin 300072, China
Abstract:The choice of time delay and embedding dimension is very important to the phase space reconstruction of any chaotic time series.The optimal time delay by computing autocorrelation function of time series was determined.Optimal embedding dimension was given by means of the relation between embedding dimension and correlation dimension of chaotic time series.Based on the methods above,ANN model was chosen to appoximate the given true system.At the same time,a new algorithm was applied to determine the network weights.The theory above was demonstrated through the research of time series generated by Logistic map.
Keywords:chaos  autocorrelation function  optimal embedding dimension  optimal time delay  Logistic map  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号