首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基函数神经网络的飞机目标识别法
引用本文:杨华,任勇,李莹,山秀明,肖志河,巢增明. 基于径向基函数神经网络的飞机目标识别法[J]. 清华大学学报(自然科学版), 2001, 41(7): 36-38
作者姓名:杨华  任勇  李莹  山秀明  肖志河  巢增明
作者单位:清华大学电子工程系,;中国北京环境特性研究所,
基金项目:国防基金项目 (97J7.4.4.JW0 110
摘    要:通过将自适应小波神经网络 (AWNN)中的小波基函数直接替换为 Gauss径向基函数 ,提出了一种适于对目标一维距离像信号直接进行分类的径向基函数神经网络(RBFNN)。对用于信号分类的 RBFNN网络结构的确定、RBFNN的训练以及最终判决规则的确定等问题 ,进行了深入的讨论。对 6个目标不同信噪比下的分类结果表明 ,提出的 RBFNN对距离像信号具有很强的分类能力 ,对于开发更加实用化的目标识别算法显示了很大的潜力

关 键 词:高分辨距离像  自适应小波神经网络(AWNN)  径向基函数神经网络(RBFNN)  目标识别
文章编号:1000-0054(2001)07-0036-03
修稿时间:2000-06-12

Aircraft target recognition method based on radial-basis-function neural networks
YANG Hua ,REN Yong ,LI Ying ,SHAN Xiuming ,XIAO Zhihe ,CHAO Zengming. Aircraft target recognition method based on radial-basis-function neural networks[J]. Journal of Tsinghua University(Science and Technology), 2001, 41(7): 36-38
Authors:YANG Hua   REN Yong   LI Ying   SHAN Xiuming   XIAO Zhihe   CHAO Zengming
Affiliation:YANG Hua 1,REN Yong 1,LI Ying 1,SHAN Xiuming 1,XIAO Zhihe 2,CHAO Zengming 2
Abstract:A new radial basis function neural network (RBFNN) is introduced for classification of aircraft targets. The method directly replaces the wavelet basis function in an adaptive wavelets neural network (AWNN) with the Gauss radial basis function. The RBFNN was then applied to the classification of 6 aircraft targets. Some related problems are thoroughly discussed, such as the selection of the RBFNN network structure, RBFNN training and construction of the criteria for making a final decision. The recognition results for different SNR suggest that this RBFNN is more suitable for classification directly on one dimensional range profile signals, and show great potential for developing more practical recognition algorithms.
Keywords:high resolution range profile (HRRP)  adaptive wavelets neural network  radial basis function neural network  target recognition
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号