首页 | 本学科首页   官方微博 | 高级检索  
     


Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial
Authors:Mengkun Liu  Harold Y Hwang  Hu Tao  Andrew C Strikwerda  Kebin Fan  George R Keiser  Aaron J Sternbach  Kevin G West  Salinporn Kittiwatanakul  Jiwei Lu  Stuart A Wolf  Fiorenzo G Omenetto  Xin Zhang  Keith A Nelson  Richard D Averitt
Affiliation:Department of Physics, Boston University, Boston, Massachusetts 02215, USA.
Abstract:Electron-electron interactions can render an otherwise conducting material insulating, with the insulator-metal phase transition in correlated-electron materials being the canonical macroscopic manifestation of the competition between charge-carrier itinerancy and localization. The transition can arise from underlying microscopic interactions among the charge, lattice, orbital and spin degrees of freedom, the complexity of which leads to multiple phase-transition pathways. For example, in many transition metal oxides, the insulator-metal transition has been achieved with external stimuli, including temperature, light, electric field, mechanical strain or magnetic field. Vanadium dioxide is particularly intriguing because both the lattice and on-site Coulomb repulsion contribute to the insulator-to-metal transition at 340?K (ref. 8). Thus, although the precise microscopic origin of the phase transition remains elusive, vanadium dioxide serves as a testbed for correlated-electron phase-transition dynamics. Here we report the observation of an insulator-metal transition in vanadium dioxide induced by a terahertz electric field. This is achieved using metamaterial-enhanced picosecond, high-field terahertz pulses to reduce the Coulomb-induced potential barrier for carrier transport. A nonlinear metamaterial response is observed through the phase transition, demonstrating that high-field terahertz pulses provide alternative pathways to induce collective electronic and structural rearrangements. The metamaterial resonators play a dual role, providing sub-wavelength field enhancement that locally drives the nonlinear response, and global sensitivity to the local changes, thereby enabling macroscopic observation of the dynamics. This methodology provides a powerful platform to investigate low-energy dynamics in condensed matter and, further, demonstrates that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear electromagnetic composites.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号