首页 | 本学科首页   官方微博 | 高级检索  
     

液氮冷却煤变形-破坏-渗透率演化模型及数值分析
引用本文:张春会,王来贵,赵全胜,李伟龙. 液氮冷却煤变形-破坏-渗透率演化模型及数值分析[J]. 河北科技大学学报, 2015, 36(1): 90-99
作者姓名:张春会  王来贵  赵全胜  李伟龙
作者单位:1. 河北科技大学建筑工程学院,河北石家庄050018;辽宁工程技术大学力学与工程学院,辽宁阜新123000
2. 辽宁工程技术大学力学与工程学院,辽宁阜新,123000
3. 河北科技大学建筑工程学院,河北石家庄,050018
基金项目:国家自然科学基金,河北省自然科学基金
摘    要:如何定量评估液氮冷却后煤储层的渗透率演化是液氮冷却增透煤储层技术的关键。为分析液氮注入煤后的变形、破坏和渗透率演化过程,将煤视作弹脆塑材料,其变形过程包括弹性变形、脆性跌落和残余塑性流动3个阶段,结合单元强度退化指数、扩容指数和Mohr-Column准则,建立了考虑围压对煤单元峰后力学行为影响的本构模型。根据煤岩单元变形过程,将煤岩单元渗透率演化分成2个阶段,即弹性压缩煤岩单元渗透率减小阶段及煤岩单元破坏后的渗透率增加阶段。分析了单元弹性变形、剪切破坏和拉破坏与渗透率之间的关系。煤岩单元弹性压缩和拉伸引起单元内孔隙空间的变化,进而影响单元渗透率;煤岩单元剪切破坏在单元内形成共轭剪切带,在剪切带内的流体流动服从平行板定律,给出了基于单元体应变的剪切带宽度和渗透率计算公式;煤岩单元拉破坏在单元体内形成"十"字型裂隙,在裂隙内的流动也服从平行板定律,给出了基于单元体应变的裂隙宽度和渗透率计算公式。结合热传导理论建立了液氮冷却煤层的温度-变形-破坏-渗透率演化模型,并在FLAC下利用Fish函数方法予以实现。数值算例研究了液氯注入辽宁王营子矿某煤层气抽放井后煤层的变形、破坏和渗透率演化过程。结果表明:1)煤受液氮冷却作用后发生体积收缩,越靠近钻孔温度梯度越大,收缩变形越大,温度拉应力越大,越容易破坏,形成拉破坏区。液氮注入冷却10d后的拉破坏区约0.65m宽。2)在拉破坏区,单元内形成了贯通的裂隙,单元体渗透率显著增长,液氮冷却10d的单元渗透率最大增长幅度可达1.97×105倍。3)远离钻孔区域,拉应力也使得煤的渗透率有所增加,增加幅度为1%~14%,远小于破坏区。4)随着冷却时间增加,破坏区域扩大,但增长速率逐渐减缓,这表明在工程实践中冷却时间过长,不一定能取得更好的冷裂效果。5)液氮冷裂的主要影响区域在1.0m左右,但实际工程中钻孔内压力、煤岩体内水的相变等对煤岩的实际变形和破坏也有很大影响,从而使得液氮冷裂的影响区域更大。6)模型能较好地反映液氮冷却煤体变形-破坏-渗透率演化过程,从而为评估液氮冷却煤岩增透效果提供一种简便、可行的方法。

关 键 词:地基基础工程  液氮  拉破坏  温度  渗透率  演化
收稿时间:2014-10-23

Permeability evolution model and numerical analysis of coupled coal deformation, failure and liquid nitrogen cooling
ZHANG Chunhui,WANG Laigui,ZHAO Quansheng,LI Weilong. Permeability evolution model and numerical analysis of coupled coal deformation, failure and liquid nitrogen cooling[J]. Journal of Hebei University of Science and Technology, 2015, 36(1): 90-99
Authors:ZHANG Chunhui  WANG Laigui  ZHAO Quansheng  LI Weilong
Abstract:
Keywords:ground foundation engineering  liquid nitrogen  tension failure  temperature  permeability  evolution
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《河北科技大学学报》浏览原始摘要信息
点击此处可从《河北科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号