首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机在机械设备振动信号趋势预测中的应用
引用本文:杨俊燕,张优云,赵荣珍. 支持向量机在机械设备振动信号趋势预测中的应用[J]. 西安交通大学学报, 2005, 39(9): 950-953
作者姓名:杨俊燕  张优云  赵荣珍
作者单位:西安交通大学轴承及润滑理论研究所,710049,西安
基金项目:国家自然科学基金重点资助项目(50335030).
摘    要:将支持向量机(SVMs)用于机械设备振动信号趋势预测中,研究了SVMs参数及核函数类型对SVMs预测能力的影响.试验显示,在短期预测中4种核函数有着基本相同的预测能力,而在长期预测中,径向基函数核和多项式核表现出了相对较高的预测能力,同线性核和神经网络核相比,它们的归一化均方误差约降低了20%.SVMs与向后传播神经网络、径向基函数网络和广义回归神经网络预测能力的对比表明,实现了结构风险最小化原理的SVMs具有更好的预测能力,在长期预测中,其归一化均方误差约降低了15%。

关 键 词:趋势预测 支持向量机 神经网络 回归
文章编号:0253-987X(2005)09-0950-04
收稿时间:2004-12-07
修稿时间:2004-12-07

Application of Support Vector Machines in Trend Prediction of Vibration Signal of Mechanical Equipment
Yang Junyan,ZHANG Youyun,Zhao Rongzhen. Application of Support Vector Machines in Trend Prediction of Vibration Signal of Mechanical Equipment[J]. Journal of Xi'an Jiaotong University, 2005, 39(9): 950-953
Authors:Yang Junyan  ZHANG Youyun  Zhao Rongzhen
Abstract:Support vector machines (SVMs) were used for trend prediction of vibration signal of mechanical equipment. The influence of kernel functions and parameters on SVMs prediction performance was studied. Analysis of the experimental results shows that four kernel functions have the same prediction performance in short term prediction and radial basis function (RBF) kernel has better prediction performance than other kernels in long term prediction. The normalized mean square error (NMSE) of RBF kernel decreases by about 20% compared with other kernels. In comparison with conventional back propagation neural network (BP), radial basis function network (RBF) and generalized regression neural network (GRNN), the results show that SVMs, which implement the structure risk minimization principle, obtain the best prediction performance and the NMSE of SVMs decreases by about 15% in long term prediction.
Keywords:trend prediction    support vector machine    neural network    regression
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号