首页 | 本学科首页   官方微博 | 高级检索  
     

SVM在金属塑性成形摩擦系数预测中的应用研究
引用本文:董本清 钟清流 刘长生. SVM在金属塑性成形摩擦系数预测中的应用研究[J]. 科学技术与工程, 2006, 6(22): 3572-35743608
作者姓名:董本清 钟清流 刘长生
作者单位:湖南大学计算机与通信学院,长沙 410082;中南林业科技大学工业学院,长沙 410004
摘    要:针对金属塑性成形过程中摩擦系数较难确定的客观情况,提出一种基于支持向量机的能够快速预测摩擦系数的方法。利用支持向量机建立了金属塑性成形中润滑油、模具表面粗糙度、滑动速度和金属材料表面粗糙度与摩擦系数的支持向量机模型.实验结果表明这种模型具有很好的精确度和预测性,为摩擦学设计和程序化计算和分析提供了一种方便且有效的工具。

关 键 词:支持向量机  金属塑性成形  摩擦系数  预测
文章编号:1671-1815(2006)22-3572-04
收稿时间:2006-07-12
修稿时间:2006-07-12

The Implicational Research on the Prediction of Friction Coefficient in Metal Plastic Forming Process Based on SVM
DONG Benqing,ZHONG Qingliu,LIU Changsheng. The Implicational Research on the Prediction of Friction Coefficient in Metal Plastic Forming Process Based on SVM[J]. Science Technology and Engineering, 2006, 6(22): 3572-35743608
Authors:DONG Benqing  ZHONG Qingliu  LIU Changsheng
Abstract:Directing at the circumstance that the friction coefficient of the metal plastic forming process is difficult to confirm. A new method is proposed based on support vector machine, which can quickly predict the friction coefficient. The support vector machine is used to construct the support vector machine model of the lubricating oil in metal plastic forming process, the surface roughness of the die, the gliding rate, the surface roughness and friction of the metal materials. The experimental results show that this model has excellent accuracy and prophetical and provide a convenient and effective tool for the design of tribology and the programmable computing.
Keywords:SVM metal plastic forming process friction coefficient prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号