首页 | 本学科首页   官方微博 | 高级检索  
     

基于脉冲耦合神经网络的多区域图像分割
引用本文:徐光柱,刘鸣,任东,马义德,刘晓丽. 基于脉冲耦合神经网络的多区域图像分割[J]. 山东大学学报(理学版), 2010, 45(7): 86-93
作者姓名:徐光柱  刘鸣  任东  马义德  刘晓丽
作者单位:1. 三峡大学计算机与信息学院智能视觉与图像信息研究所, 湖北 宜昌 443002;
2. 三峡大学艺术学院实验中心, 湖北 宜昌 443002;
3. 兰州大学信息科学与工程学院, 甘肃 兰州 730000
基金项目:国家自然科学基金资助项目 
摘    要:
为解决传统脉冲耦合神经网络(pulse coupled neural network,PCNN)仅限于二值分割且无法对灰度缓慢变化的大范围区域进行完整分割的问题,提出了一种基于PCNN的多区域图像分割算法。将分割图像经过平滑和归一化后送入PCNN,在快速连接机制作用下,每次迭代处理中具有相似状态的神经元可实现同步点火,完成单个图像区域的完整分割。经过预定的迭代次数后,以各神经元的点火次数为新输入图像各像素点的灰度值,然后经平滑和过归一化后再次送入PCNN重复上述处理,完成多区域图像分割。Berkeley图库的实验结果显示,该算法高效、鲁棒,可有效应用于图像分割。

关 键 词:多区域图像分割  脉冲耦合神经网络  快速连接,
收稿时间:2010-04-02

Multi-region image segmentation based on pulse coupled neural network
XU Guang-zhu,LIU Ming,REN Dong,MA Yi-de,LIU Xiao-li. Multi-region image segmentation based on pulse coupled neural network[J]. Journal of Shandong University, 2010, 45(7): 86-93
Authors:XU Guang-zhu  LIU Ming  REN Dong  MA Yi-de  LIU Xiao-li
Affiliation:1. Institute of Intelligent Vision and Image Information, College of Computer and Information Technology,
China Three Gorges University, Yichang 443002, Hubei, China;
2. Experiments Center of Art Academy, China Three Gorges University, Yichang 443002, Hubei, China;
3. School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
Abstract:
In order to solve the problems that the traditional pulse coupled neural network (PCNN) refers only to binary segmentation and does not work well for bigger image regions with sluggish gray variation,a multi-region image segmentation method was proposed based on PCNN. First, the initial image was preprocessed by smoothing and normalizing and put into PCNN. Then, with the help of fast linking, neurons with similar states fired synchronously to finish single region segmentation in each iteration processing. After pre-configured iterations, the total firing times of each neuron were calculated as the pixel intensity of new input image,and then preprocessed by smoothing and normalizing again,and finally put into PCNN. The above processing was repeated to complete multi-region segmentation. Experimental results on Berkeley image database showed that the proposed method was efficient, robust and could be used to segment image effectively.
 
Keywords:multi-region segmentation   pulse coupled neural network (PCNN)   fast linking
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号