首页 | 本学科首页   官方微博 | 高级检索  
     

基于不完备信息系统的文本分类研究与应用
引用本文:代劲,胡峰,王国胤. 基于不完备信息系统的文本分类研究与应用[J]. 重庆邮电大学学报(自然科学版), 2006, 18(3): 397-401
作者姓名:代劲  胡峰  王国胤
作者单位:重庆邮电大学,计算机科学与技术研究所,重庆,400065;重庆邮电大学,计算机科学与技术研究所,重庆,400065;重庆邮电大学,计算机科学与技术研究所,重庆,400065
基金项目:国家自然科学基金;重庆市教委资助项目;重庆邮电大学校科研和教改项目
摘    要:在文本分类中,文本特征向量通常高达几千甚至上万维,给整个分类过程带来了相当庞大的计算量,因此进行有效的降维处理是非常重要的。在不完备信息系统理论的基础上,结合文本分类的特点,提出了一种量化容差关系和启发式的属性约简算法。实验证明该属性约简算法不仅能有效地降低文本特征向量的维度,同时能保证分类的正确率。

关 键 词:文本分类  粗集  不完备信息系统  属性约简
文章编号:1004-5694(2006)03-0397-05
收稿时间:2005-12-12
修稿时间:2005-12-12

Research and application of text classification based on incomplete information system
DAI Jin,HU Feng,WANG Guo-yin. Research and application of text classification based on incomplete information system[J]. Journal of Chongqing University of Posts and Telecommunications, 2006, 18(3): 397-401
Authors:DAI Jin  HU Feng  WANG Guo-yin
Affiliation:Institute of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
Abstract:Document vectors are highly dimensional in text classification, possibly there are tens of thousands of dimension, which leads to a massive amount of calculation. Thus, it is important to decrease the dimension. In the paper, the authors present a quantitative tolerant relation and a heuristic algorithm for attribute reduction, combining theory of incomplete information systems with features of text classification. The experiment results illuminate the efficiency, for it can not only effectively reduce the dimension, but also maintain high accuracy of text classification.
Keywords:text classification   rough set   incomplete information system   attribute reduction
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号